-[3z^2+4z-(2z^2-8z)]+[(8z^2-[5z-z^2])+3z^2]=

Simple and best practice solution for -[3z^2+4z-(2z^2-8z)]+[(8z^2-[5z-z^2])+3z^2]= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -[3z^2+4z-(2z^2-8z)]+[(8z^2-[5z-z^2])+3z^2]= equation:


Simplifying
-1[3z2 + 4z + -1(2z2 + -8z)] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0

Reorder the terms:
-1[3z2 + 4z + -1(-8z + 2z2)] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0
-1[3z2 + 4z + (-8z * -1 + 2z2 * -1)] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0
-1[3z2 + 4z + (8z + -2z2)] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0

Reorder the terms:
-1[4z + 8z + 3z2 + -2z2] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0

Combine like terms: 4z + 8z = 12z
-1[12z + 3z2 + -2z2] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0

Combine like terms: 3z2 + -2z2 = 1z2
-1[12z + 1z2] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0
[12z * -1 + 1z2 * -1] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0
[-12z + -1z2] + [(8z2 + -1[5z + -1z2]) + 3z2] = 0
-12z + -1z2 + [(8z2 + [5z * -1 + -1z2 * -1]) + 3z2] = 0
-12z + -1z2 + [(8z2 + [-5z + 1z2]) + 3z2] = 0

Reorder the terms:
-12z + -1z2 + [(-5z + 8z2 + 1z2) + 3z2] = 0

Combine like terms: 8z2 + 1z2 = 9z2
-12z + -1z2 + [(-5z + 9z2) + 3z2] = 0

Remove parenthesis around (-5z + 9z2)
-12z + -1z2 + [-5z + 9z2 + 3z2] = 0

Combine like terms: 9z2 + 3z2 = 12z2
-12z + -1z2 + [-5z + 12z2] = 0

Remove brackets around [-5z + 12z2]
-12z + -1z2 + -5z + 12z2 = 0

Reorder the terms:
-12z + -5z + -1z2 + 12z2 = 0

Combine like terms: -12z + -5z = -17z
-17z + -1z2 + 12z2 = 0

Combine like terms: -1z2 + 12z2 = 11z2
-17z + 11z2 = 0

Solving
-17z + 11z2 = 0

Solving for variable 'z'.

Factor out the Greatest Common Factor (GCF), 'z'.
z(-17 + 11z) = 0

Subproblem 1

Set the factor 'z' equal to zero and attempt to solve: Simplifying z = 0 Solving z = 0 Move all terms containing z to the left, all other terms to the right. Simplifying z = 0

Subproblem 2

Set the factor '(-17 + 11z)' equal to zero and attempt to solve: Simplifying -17 + 11z = 0 Solving -17 + 11z = 0 Move all terms containing z to the left, all other terms to the right. Add '17' to each side of the equation. -17 + 17 + 11z = 0 + 17 Combine like terms: -17 + 17 = 0 0 + 11z = 0 + 17 11z = 0 + 17 Combine like terms: 0 + 17 = 17 11z = 17 Divide each side by '11'. z = 1.545454545 Simplifying z = 1.545454545

Solution

z = {0, 1.545454545}

See similar equations:

| 3x+12.5=3x+12.5 | | 4u*3t= | | 3x-7y=-9 | | 3w-3+2w=-16 | | 4y-(-2y+5)=19 | | 5+0.5x=x | | x+(x*.09)=137 | | -7/9x=-46 | | 11(x-2)+3x=7(2x+4)-8 | | -1(x-4)-6=3/2x | | x-(3-y)-12x= | | X-(-3y)-12x= | | 2w+2a=30 | | (x^3+x^2+x+1)(8x-3)= | | 1/3x^2-1/3x-24=0 | | (10x^7-x^5)/2x^3 | | -10x-15x= | | 3x+8x^2-1=0 | | 2w+6a=30 | | (-2m^2+9n^2-10n)-[(9m^2-10m+7n)+(-9m^2)+4n^2]= | | 2(2x+3)=6(6x+5)+5 | | 7(x-5)+14=2x-21+5x | | 9000000+200000b=500000b | | 16(x-1)=-4(4-x)+12 | | 14y-59+9y+1+11y-23=180 | | 25+45x=40+.25x | | 0.07(20)+0.04y=5 | | -2/3x-10=14 | | 8xy+2y^2x=-6 | | (2xy-sec^2(2x))dx+(x^2+3y^2)dy=0 | | 9+2x*6=14+(7)x | | 2/10x7/15 |

Equations solver categories